EMAGENIT

State of the art Excel training.

Creating Advanced Tools
with Fortran and Excel VBA

200 145.00 .1 “* Toos
- 5 17117.07 K Il
Equilibrium Method X 4640 5960 529" 1@ 20 ¥) 10 .1y RunFortran
¥ \ > 20 *Niagram to draw
(°K): \ Diagram auto draw
0 | M 'l . 3 Type Coeffcients, table auto expands
06 08 1 TR 2 1
0| .
(K?' Run x(m) -1 5 -2 0
0 Simulation s 2 B 0
(°K): Rod Declare Sub JGM_Fortran(...
145 T, T, Sub gather_data_run_fortran()
Dim ws_cir As Worksheet...
(1/m?):
21 _, x=0 Ta x=L l
m): ns: dx: Temp (OC)% Units: meter j
1 10 ‘i' [a] 0.00 0.00
R 0.10 8.07 C:\Users\EMAGENIT\Desk =
. = top\ResData\April21.txt n
Build chart [v] Worksheet Table 0.20 16.37 ’ ‘
0.30 25.25 Reservoir Sounding Calcvol C
Declare Sub Equil_Fortran(... ' ‘ 0.00 00 4.00
Sub run_equil_fortran() . ‘ 0.00 0.00
PR Dim Ta As Double... 00 35.65 33.24

N

Think Fortran is a dead language? What

about all that verified legacy code? Learn to
combine the speed of Fortran with the GUI, charting,

modeling, and data processing capabilities of Excel VBA to
create lightning-fast engineering and science tools.

© EMAGENIT 2026

All Rights Reserved www.emagenit.com >

https://www.emagenit.com
https://www.emagenit.com/

How our class can
help you.

Our 3-day class shows you “hands-on how” to
create powerful tools by combining the speed of
Fortran with the GUI, data, and modeling abilities of
Excel VBA. It shows how to use the key Excel VBA
and text file elements necessary to process, pass, Class Examples >
and return Fortran DLL data.

Also covered is how to design and compile Fortran DLLs or upgrade existing Fortran
code to run from VBA. Our class also discusses how to automate Excel's data tools
and charts; build models; and create GUIs from userforms, shapes, worksheets, and
ActiveX to run Fortran DLLs.

who should attend
the class?

Engineers, scientists, and technicians. Class
examples will be determined by those in
attendance.

https://emagenit.com/creating-advanced-tools-with-fortran-and-excel-vba-training.html#examples

Minimum EXxcel skills needed
For the class.

Select this Excel training if you or your group have:

e Operated Excel's data processing tools like Filter, Text
to Columns, Remove Duplicates, Sort...

e Used worksheet functions before and built formulas

e Created charts, Excel tables, and used drawing shapes

e Have used Excel VBA before in a basic capacity

e Been exposed to the concepts of basic programming
like loops, logic, functions, and variables

e Have used Fortran before in a basic capacity

How we run the
class.

We focus our training on what our customers need. When
training begins, we analyze those needs and shift our outline
appropriately. We will stress or add topics that our customers
want.

Class formats
and signup.

In-Person, Virtually, and Onsite. Our live hands-on classes
can be attended virtually or in-person. Please visit our public signup page
for class times and pricing >. Contact EMAGENIT directly at
1.629.325.9937 for more information about our onsites.

https://emagenit.com/creating-advanced-tools-with-fortran-and-excel-vba-training.html#ClassSchedule

Key Excel VBR topics covered in class.

. Full review of the VBA language, Excel objects, VBA Editor, and debugging

. How to track worksheet ranges, headers, and data in your VBA code

« Running Excel and VBA functions in your code to analyze and lookup data

. Using loops and logic to process and assemble Fortran DLL data and arrays

. Looping through workbooks, worksheets, and folders to gather data for Fortran
. Various ways to rapidly output Fortran data to the worksheet and format it

. Using Excel VBA to read / write Fortran DLL text files

. Basic coding strategies for designing and retrofitting Fortran code to run in DLLs
« Complete Fortran and VBA procedure calling and argument data typing rules

« Rules for compiling 32- and 64-bit Fortran DLLs

« Creating worksheet GUIs and events to run your Fortran DLLs

« Using userform, ActiveX controls, and events run Fortran DLLs

. Designing worksheet models and custom worksheet functions (UDFs) to run
Fortran DLLs

« Using VBA to create charts, shapes, and PivotTables to display Fortran DLL
output

Detailed class syllabus.

Day-1

VBA Language, Module, and Editor Review for Fortran DLL
Projects

* This section is discussed when needed in the class.

. How to use the Visual Basic Editor, its debugging tools, and module types for
Fortran DLL projects

. Review of the VBA language; variables; data types; logic operators; and Excel
objects, properties, and methods

. Review of technical equation construction in VBA using the various math
operators

. Review of VBA procedure design, scope, argument lists, and passing rules

. Working with VBA arrays; dimensioning arrays; clearing arrays; and re-
dimensioning arrays

Controlling Ranges, Formats, Functions, and Table Lookups
with VBA

« Using VBA to track worksheet data ranges, header positions, and data subsets

. Calculating math, trig, and statistical values in your code using Excel and VBA
functions

. Parsing and merging date / time values using the Today, DateAdd ... functions in
your code

. Performing table lookups in your code using the MATCH, VLOOKUP,
XLOOKUP... functions

. Using Excel VBA to format worksheet tables and insert, delete... rows, columns,
and cells

. Using VBA to control Excel's data features like AutoFilter, Sort, Remove
Duplicates...

Using VBA to Control Workbooks, Worksheets, Folders, and the
Windows Registry

. Tracking workbooks and worksheets in Excel VBA using the Set statement
. Opening, saving, adding, and closing workbooks with Excel VBA

« Using Excel VBA to add, move, delete, and rename worksheets

. Creating, deleting, moving, and copying folders and files with VBA

« Using SaveSetting, Getsetting... to store program settings in the Windows
Registry

Using VBA to Assemble, Process, and Output Fortran Data

« Using the Range, Cells, Offset... properties in your code to access worksheet
data

« Processing complex worksheet data patterns for Fortran using loops and logic
« Building arrays for Fortran from worksheet data using loops, logic, and ranges

« Scanning folders and workbooks for data using loops, logic, and the
FileSystemObiject

« Scanning open workbooks using loops and logic to find data and model
information

. Outputting Fortran data to the worksheet using loops, logic, arrays, and range
commands

Controlling and Processing Text Data with VBA

. Analyzing text data in your macro code using the Replace, Mid, Split, Format...
functions

. Automating Text Wizard and Text to Columns to load and parse worksheet text
data

. Using the TextStream object to open, close, read, and write to text files
. Writing Excel data to a text file using VBA loops, logic, and string concatenation

. Using loops, logic, and functions to analyze text file data and output it to the
worksheet

Visualizing Fortran Output Using VBA, Charts, Shapes, and
PivotTables

. Using VBA to create PivotTables and output Fortran data to them

« Using Excel VBA to create and format charts (line, xy scatter, column, area...)
. Reassigning Excel chart data sources with Excel VBA

« How to position charts on a worksheet using Excel VBA

« Using VBA to color chart data points, create limit lines, move data points...

« Using Excel VBA to create shapes and load Fortran data in them

« Combining shapes with charts to form visual displays
Day-2
Calling Fortran DLLs from Excel VBA Procedures

. Creating a VBA Declare statement for a Fortran DLL Subroutine or Function
routine

. Calling a Fortran DLL Subroutine or Function routine from Excel VBA
. Using argument lists to pass data between Excel VBA and Fortran
« Function design rules for calling Fortran DLL routines

« Sub procedure design rules for calling Fortran DLL routines

. Property procedure design rules for calling Fortran DLL routines

Designing a Fortran Routine to be Called from VBA

. Using the STDCALL, ALIAS, and DLLEXPORT attributes to define your DLL
entry points

. Using the REFERENCE and VALUE attributes to specify argument passing
convention

« Designing Fortran arguments to accept VBA numbers, strings, Boolean, logic...
values

« Laying out Fortran arguments to accept string arrays

. Creating Fortran arguments to accept various array types (explicit, adjustable...)

Passing Data Types Between Fortran and VBA
. Passing numbers, dates, and Booleans between VBA and Fortran
« Passing numeric arrays between VBA and Fortran
« Passing strings between VBA and Fortran
. Passing string arrays to Fortran from VBA
. Passing a user defined type to Fortran from VBA
« Passing a complex number between VBA and Fortran

. Passing a Fortran derived data type back to Excel VBA

Using Text Files to Pass Data to a Fortran DLL
* General text file control discussed on Day-1
« Rules for assembling VBA text files for Fortran DLLs

. Designing Fortran routines that quickly read text files into variables and arrays

. Using VBA, ADO, SQL, and Power Query to query large Fortran output text files

Compiling and Debugging a Fortran DLL
« Compiling a Fortran DLL in Visual Studio using Intel Visual Fortran
. Debugging a Fortran DLL from Fortran
. Debugging a Fortran DLL from Excel VBA

. Different ways VBA reacts when it encounters an error in a Fortran DLL
Day-3
Creating Worksheet GUIs to Control Your Fortran DLLs

- Designing interfaces from worksheet cells, Data Validation, ActiveX controls, and
shapes

« Tracking worksheet information in VBA using cell and table names

« Using Conditional Formatting to auto format DLL inputs and outputs on the
worksheet

« Using VBA to control and read ActiveX controls on the worksheet (load list
boxes, set scroll bars...)

« How to design ActiveX control and worksheet events to run your DLLs
« Using shapes and VBA to display program information, status....

« Designing VBA procedures to run your code at specific times or by pressing a
key

Creating Userforms and Folder / File Pickers to Run Your DLLs

« When to design a modal vs. a non-modal userform; userform execution
strategies

. How to create ActiveX controls, text, and pictures on userforms

. Designing a VBA procedure to display a userform and load its controls

. Using VBA to command ActiveX controls (check boxes, text boxes, scroll bars...)
. Using VBA to load combo boxes and list boxes

. Designing userform and ActiveX control events to run Fortran DLLs

« Designing toolbars, shortcut keys, and Ribbon buttons to run your Fortran DLLs

. Creating folder / file pickers to track files and folders

Designing Excel Models to Run Fortran DLLs
« Laying out model input and output ranges on the Excel worksheet
« Using ActiveX controls and Data Validation to control user input
« Using names and Excel tables in VBA to rapidly access model data
« Creating VBA Sub procedures to calculate and assemble model data for DLLs
« Using VBA to discretize calculations for use in Fortran numerical methods
« Designing custom worksheet functions (UDFs) to execute DLLs from formulas
« Using VBA to create worksheet formulas on the fly and output results

« Using VBA to create model upload, download, and trade study procedures

